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New chiral titanium complexes for enantioselective reductive
cyclizations of diimines to trans-2,3-diarylpiperazines
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Abstract

Enantioselective intramolecular reductive coupling of diimines by chiral titanium complexes, prepared using a titanium(IV) reagent
and hemisalen ligands derived from chiral b-amino alcohols, gives trans-2,3-diarylpiperazines in up to 97% ee.
� 2007 Elsevier Ltd. All rights reserved.
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Scheme 1. Reductive coupling of diimine 1a in the presence of chiral
ligands 3a–d.
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Fig. 1. Chiral ligands examined for reductive coupling of diimine.
Though enantioselective pinacol couplings of aromatic
aldehydes using chiral titanium and chromium complexes1

are widely reported, very few reports are available for the
enantioselective reductive coupling of chiral imines.2

Recently, we reported intramolecular reductive coupling
of diimines in the presence of the Ti(OiPr)2Cl2/Zn reagent
system to afford (±)-trans-2,3-diarylpiperazines.3 Herein,
we report the enantioselective intramolecular reductive
coupling of diimines derived from ethylenediamine leading
to enantiomerically pure 2,3-diarylpiperazines 2 using
various chiral titanium complexes consisting of a chiral
diamide, a chiral diol or a chiral b-amino alcohol.

Initially, we examined the enantioselective reductive
coupling of N,N0-dibenzylidene-1,2-ethanediamine 1a using
different chiral ligands (Scheme 1, Fig. 1). The results are
summarized in Table 1.

In the case of diamide R,R-3a, only racemic 2,3-diphenyl-
piperazine 2a was obtained when the TiCl4/iPrMgBr
reagent system was used (Table 1, entry 1). Lowering the
temperature to �40 �C did not result in any enantioselec-
tivity; instead the yield of the product decreased (Table 1,
entry 2). A slight enhancement in the enantioselectivity
was achieved using the Ti(OiPr)2Cl2/Zn reagent system
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(Table 1, entry 3). Although 2,3-diphenylpiperazine was
obtained in higher yields in the presence of chiral R-
BINOL 3b, the enantioselectivity was poor (Table 1, entries
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Table 1
Reductive coupling of diimine 1a in the presence of chiral ligands 3a–da

Entry Ligand Lewis acid T (�C) Yieldb (%) ee/confc (%)

1d R,R-3a TiCl4 25 60 —
2d R,R-3a TiCl4 �40 40 —
3d R,R-3a Ti(OiPr)2Cl2 25 75 12 (S,S)
4 R-3b Ti(OiPr)4 25 65 —
5 R-3b Ti(OiPr)4 �70 60 5 (R,R)
6 R-3b Ti(OiPr)2Cl2 25 82 —
7e 3c TiCl4 25 75 —
8e 3c TiCl4 �70 70 10 (R,R)
9 R,R-3d TiCl4 25 40 10 (S,S)

a Unless noted otherwise, all the reactions were carried out with
1.0 mmol of diimine 1a, 2.5 mmol of chiral ligands 3a, b and d, 2.2 mmol
of Lewis acid and 5 mmol of Zn dust in CH2Cl2.

b Yield of isolated product after flash column chromatography on silica.
c All ee values reported here are based on HPLC analysis on a Chiralcel

OD-H column.
d THF was used as a solvent and iPrMgBr was used as a reductant.
e 4.0 mmol of diimine 1a, 11.0 mmol of chiral ligand 3c, 10.0 mmol of

TiCl4 and 25 mmol of Zn were used.
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Scheme 3. Reductive coupling of diimines 1 using chiral titanium complex
7 [Ti*]/Zn.

Table 2
Asymmetric synthesis of 2,3-diarylpiperazine 2 using a catalytic amount of
chiral titanium complexes 7b and 7da

Entry Chiral titanium
complex

Ar Yieldb

(%)
ee/confc

(%)

1 R-7b Ph 77 15 (R,R)
2 R-7b 4-MeO–

C6H4

60 18 (R,R)

3 S-7d Ph 54 15 (S,S)
4 S-7d 4-MeO–

C6H4

48 28 (S,S)d

a Unless noted otherwise, all the reactions were carried out with
2.5 mmol of diimine 1, 0.5 mmol of chiral titanium complex 7 (prepared
in situ), 10.0 mmol of Zn dust in CH2Cl2 (20 mL), CH3CN (5 mL) and
TMSCl (5.0 mmol) at 25 �C.

b Yield of isolated product after flash column chromatography on silica.
c All ee values reported here are based on HPLC analysis on a Chiralcel

OD-H column.6
d Absolute configuration was assigned as (S,S) by single crystal X-ray

analysis of the corresponding (S)-camphorsulfonate salt.7

Table 3
Asymmetric synthesis of 2,3-diarylpiperazines 2 using a stoichiometric
amount of chiral titanium complexes 7a

Entry Chiral Ti
complex

Ar T

(�C)
Yieldb

(%)
ee/confc

(%)

1 R-7a Ph 25 45 60 (R,R)
2 R-7b Ph 25 72 76 (R,R)
3 S-7c Ph 25 55 50 (S,S)
4 S-7c Ph �10 40 55 (S,S)
5 S-7d Ph 25 75 88 (S,S)
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4–6). The use of pinanediol 3c and (R,R)-trans-a,a0-
(2,2-dimethyl-1,3-dioxalane-4,5-diyl)bis(diphenylmethanol)
TADDOL 3d gave enantioselectivity of only up to 10%
(Table 1, entries 7–9).

Previously, the chiral titanium complex 7d prepared
from tridentate hemisalen ligand 4d was used in the enan-
tioselective pinacol coupling of aldehydes.1d,4 We have pre-
pared the chiral titanium complexes 7a–d in situ (Scheme 2)
and used them for the reductive coupling of diimines 1.5

When the titanium complexes 7b and 7d were used in cat-
alytic amounts (10 mol %), products 2 were obtained in
moderate to good yields but the enantioselectivities
obtained were poor (Scheme 3, Table 2).

When a stoichiometric amount of complex 7a was used,
moderate enantioselectivity was achieved (Table 3, entry
1). Encouraged by this result, we carried out the reductive
coupling under different conditions and also with chiral
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6 S-7d 4-MeO–
C6H4

25 55 97 (S,S)d

a Unless noted otherwise, all the reactions were carried out with
0.5 mmol of diimine 1, 1.25 mmol of chiral titanium complexes 7a–d

(prepared in situ), and 2.5 mmol of Zn dust in CH2Cl2 (10 mL), CH3CN
(5 mL).

b Yield of isolated product after flash column chromatography on silica.
c All ee values reported here are based on HPLC analysis.6
d Absolute configuration was assigned (S,S) by single crystal X-ray

analysis of the corresponding (S)-camphorsulfonate salt.7
titanium complexes containing different substitution
patterns 7b–d (Table 3). We observed that the presence of
a bulky group such as the tert-butyl group on the phenyl
ring had a significant role in enhancing the enantioselecti-
vity as well as the yield. The chiral titanium complexes 7b

and 7d gave the 2,3-diphenylpiperazine product 2a in good
ee (Table 3, entries 2 and 5). Decreasing the reaction
temperature (�10 �C) did not lead to any improvement in
enantioselectivity (Table 3, entry 4). By using the chiral



Fig. 2. ORTEP diagram of the (S)-camphorsulfonate salt 8 (thermal ellipsoids are drawn at 20% probability).
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titanium complex 7d, 2,3-bis(4-methoxyphenyl)piperazine
2b was obtained with very good enantioselectivity, up to
97% ee (Table 3, entry 6). The absolute configurations of
the newly formed chiral centres in 2b were assigned (S,S)
by single crystal X-ray analysis of the corresponding (S)-
camphorsulfonate salt 8 (Fig. 2).7

It has been reported that ligand 4 forms hexacoordinated
complex 7b, which is monomeric in nature.1d Presumably,
complexes 7a, 7c and 7d could also form hexacoordinate
complexes that are monomeric in nature.

In summary, we have developed new chiral titanium
reagents for the enantioselective intramolecular reductive
cyclizations of diimines yielding chiral 2,3-diarylpipera-
zines with good enantioselectivity. In view of the potential
applications of the chiral piperazine products in asymmet-
ric catalysis,8 organocatalysis9 and also the biological activ-
ity reported for molecules containing this skeleton,10 the
synthetic method reported here has potential for further
exploitation.
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